CLOUDS: Bringing Database Visualization Online

by,

Chris Olston & Tali Roth

UC Berkeley

CS286, Prof. Joe Hellerstein, Spring 1998

Abstract

Visualization is a hot topic in the database community because of its potential to make databases easier to use. Visualization systems present graphical representations of large data sets in order to make the data easy for non-experts to understand. Typically, these images can be produced only after processing every tuple in a large data set, forcing the visualization system to wait for a long time before it can display a useful graphical representation.

Most visualization systems can produce the graphical representation one tuple at a time in an online, constantly updating fashion. This improves the interactivity of the visualization system by displaying in graphical form a progressive sample of the data set. We introduce a visualization system enhancement called CLOUDS, which improves upon this notion. In addition to displaying a progressive sample, CLOUDS uses various techniques to predict in advance what the final graphical representation will look like once it has been completed. For point data, this technique amounts to predicting the distribution of the points in 2-space. As the points are being retrieved from the database, CLOUDS displays the points that have been retrieved so far along with translucent "clouds" that indicate where the remaining points are predicted to lie. We show that, as points are being retrieved, CLOUDS approximates the final graphical representation more closely than does the conventional display algorithm. Consequently, visualization systems using CLOUDS can display closer approximations to the final image faster than conventional visualization systems.

1. Introduction

Visualization is a hot topic in the database community because of its potential to make databases easier to use. Visualization systems present graphical representations of large data sets in order to make the data easy for non-experts to understand. Typically, these images can be produced only after processing every tuple in a large data set, forcing the visualization system to wait for a long time before it can display a useful graphical representation.

Most visualization systems can produce the graphical representation one tuple at a time in an online, constantly updating fashion. This improves the interactivity of the visualization system by displaying in graphical form a progressive sample of the data set. We introduce a visualization system enhancement called CLOUDS, which improves upon this notion. In addition to displaying a progressive sample, CLOUDS uses various techniques to predict in advance what the final graphical representation will look like once it has been completed. For point data, this technique amounts to predicting the distribution of the points in 2-space. As the points are being retrieved from the database, CLOUDS displays the points that have been retrieved so far along with translucent "clouds" that indicate where the remaining points are predicted to lie. We discuss the mathematical basis behind CLOUDS, and then present the data structures that we use to hold the information necessary to create an accurate image. We then illustrate how one might take advantage of a previously existing index to calculate the gray value with more accuracy and explain some general improvements to our algorithms. We show that, as points are being retrieved, CLOUDS approximates the final graphical representation more closely than does the conventional display algorithm. Consequently, visualization systems using CLOUDS can display closer approximations to the final image faster than conventional visualization systems.

1.1 Outline of Paper

The remainder of this paper is organized as follows. In Section 2, we discuss DataSplash and the conventional algorithm for generating a visual representation of a data set. Section 3 includes discussion of the mathematical background for determining the gray values of the CLOUDS algorithm. Sections 4 and 5 cover the implementation of the CLOUDS algorithm when no index exists and when an index exists, respectively. In Section 6, we explain some improvements to the CLOUDS algorithms. Section 7 contains a final analysis of the CLOUDS algorithms compared to the conventional algorithm. Finally, in Section 8 we discuss future work and conclude.

2. DataSplash Background

The Tioga DataSplash system provides a direct-manipulation interface for database visualization. Using a simple paint program interface, users create graphical objects on a 2-dimensional canvas. Each canvas is associated with a database table. Users can create splash objects, which are replicated for each tuple (record) in the table (i.e., one instance of the object is drawn for each tuple). Graphical properties of a splash object, such as its location on the canvas, shape and color, can be functions of attributes of the underlying tuple. Thus, splash objects are graphical representations of database tuples. DataSplash supports ad-hoc visualization of arbitrary data fields, making it useful for spatial and non-spatial data.

In this paper, we consider a small subset of the visualizations that DataSplash supports. Specifically, each tuple is represented as a black point whose x and y location on the canvas are functions of attributes of the tuple.

[image: image1.wmf]gray

value

i

final

value

i

num

pixels

_

(

)

_

(

)

_

-

å

2

DataSplash canvases are infinitely pannable in the X and Y dimensions. In addition, canvases can be zoomed in and out to adjust the level of magnification. Thus, arbitrarily large data sets can be represented, and different portions can be accessed via panning and zooming.

To display a visualization on the screen, DataSplash first sends a request for the data to the database (DataSplash runs on top of the POSTGRES ORDBMS). Then, as the data streams in, DataSplash renders it on the screen. To amortize the overhead of rendering, DataSplash renders tuples in blocks. Therefore, every time DataSplash receives a block worth of data from the database, it renders it on the screen so the user can see it. For the remainder of this paper, we refer to this display algorithm as the conventional algorithm. Figure 1 shows a visualization of U.S. cities being rendered with the conventional algorithm.

3. Theoretical Results for CLOUDS

The conventional algorithm is problematic because it takes a long time to render the final image on the screen. It would be ideal if the final image could be rendered instantaneously. Although the ideal case is impossible to achieve, we show that it is possible to render images that more closely approximate the final image while the points are being fetched than the conventional algorithm.

To quantify how closely an image approximates the final image, we use the Mean Squared Error (MSE) metric from the image compression field. To compute the MSE of a black and white image, we subtract the gray value of every pixel from the corresponding pixel in the final image (to produce a value between 0 and 1). Then we square each difference and add them together. Finally, we divide this number by the total number of pixels.

[image: image27.png]

Given a rectangular piece of an image that we are rendering, we assign the following variables:

B = % of pixels in the final image that are black

P = % of black pixels that have been fetched & plotted

In the case of the conventional algorithm, the only error results from points that have not yet been plotted. Therefore,

MSE = (1 - P)(B)(1)2 = B-PB (see Figure 2).

To improve upon the conventional algorithm, we propose coloring the rectangle gray, which is characterized by the following variable:

G = gray value of clouds (0 = black, 1 = white)

The MSE for this algorithm, the CLOUDS algorithm, is a function of the gray value used:

MSE = (1-B)(1-G) 2 + B(1-P)(0-G) 2 = 1-2G +G2-B +2BG – PBG2
By minimizing the MSE, we find that the optimal gray value is:

[image: image2.wmf]G

B

PB

Best

=

-

-

(

)

(

)

1

1

 or 1 if P

=

1

Plugging GBest into the MSE formula, we get:
[image: image3.wmf]MSE

B

B

PB

Best

=

-

-

-

-

1

1

1

2

(

)

 or 0 if P

=

B

=

1 (see Fig

ure 3)

[image: image6.wmf]0

0.01

0.02

0.03

0.04

0.05

0.06

0

20

40

60

80

100

120

Time (seconds)

MSE

Conventional

CLOUDS Gr=20

CLOUDS R-Tree Gr=50

[image: image7.wmf]0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0

20

40

60

80

100

120

Time (seconds)

MSE

Conventional

CLOUDS Overlap Gr=40

CLOUDS R-Tree Overlap Gr=40

These results show that the CLOUDS algorithm can theoretically beat or equal the conventional algorithm for all values of P and B. The CLOUDS algorithm does especially well for images that have a high B value when very few points have been fetched (see Figure 4).

[image: image8.wmf]0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0

50

100

150

Time (seconds)

MSE

No R-Tree Gr=20

No R-Tree Gr=20, Overlap

0

0.002

0.004

0.006

0.008

0.01

0.012

0

50

100

150

Time (seconds)

MSE

R-Tree Gr=20

R-Tree Gr=20, Overlap

4. Basic CLOUDS Algorithm

To reap the benefits of the above theoretical result, we devised the CLOUDS algorithm, which displays translucent “clouds” in addition to data points. While the data points are being fetched from the database, the CLOUDS algorithm renders gray rectangles, or clouds, that alter the image so that it more closely approximates the final image. Dark clouds in a certain portion of the canvas indicate that many more points are expected to appear. Light clouds indicate that very few points are expected. When DataSplash begins to render a canvas, many dark clouds will indicate portions of the canvas that are expected to contain many points. As time progresses and more points have been fetched and rendered, the clouds lighten their color to indicate that fewer points are expected.

To do this, the CLOUDS algorithm breaks up the canvas into a set of rectangles. For each rectangle, it makes its best guess at values for P (the percent of points rendered) and B (the percent of pixels that will be black in the final image). From these values, it calculates the optimal value for G (the gray value that would make the image most closely approximate the final image). Finally, it draws a cloud over the rectangle of gray value G.

We use a Quad-Tree data structure to implement the CLOUDS algorithm. Each node of a Quad-Tree represents a square in 2-space. Leaf nodes contain a list of points that fall within the square represented by the node. Non-leaf nodes have four children that divide the square equally into four smaller squares. In addition, each non-leaf node keeps track of the number of points contained in its children.

[image: image9.wmf]0

0.005

0.01

0.015

0.02

0.025

0

20

40

60

80

100

120

Time (seconds)

MSE

Conventional

CLOUDS Overlap Gr=20

CLOUDS R-Tree Overlap Gr=20

Each time DataSplash receives a block of tuples from the database, the CLOUDS algorithm first renders the points in the same way as the conventional algorithm. Then, it inserts the new points into the Quad-Tree. Next, it calculates P (the percent of tuples fetched) by dividing the number of tuples fetched so far by the total number of tuples in the table. If the tuples are retrieved from the database in random order
, then P is the same for the entire canvas. Next, the algorithm iterates through the leaf nodes of the Quad-Tree. For each Quad-Tree leaf node, it calculates the number of points that are expected to appear in the square once all of the tuples have been fetched. This number is calculated by dividing the number of points in the square so far by P. Then, B (the percent of black pixels) is simply the expected final number of points divided by the number of pixels in the square. Finally, the optimal gray value G is calculated from P and B using the formula calculated above. Once G has been calculated, the CLOUDS algorithm renders a cloud of the predicted optimal gray value over the area covered by the Quad-Tree node. Figure 5 shows the visualization of U.S. cities being rendered with CLOUDS algorithm.

After the clouds have been rendered for the first time, subsequent rendering passes only re-render clouds for Quad-Tree nodes that have received new points since the last pass. Although this saves rendering time, it is inaccurate because every new point fetched from the database changes the global value for P. This should make all of the clouds slightly lighter. Figure 6 compares the result of re-rendering all the clouds with only re-rendering clouds for Quad-Tree nodes that have received new points since the last render. Not only does updating all the clouds take a very long time, but the reduction in error due to updating all the clouds is fairly small (each data point was recorded after the same number of points had been rendered for both algorithms). This is due to the fact that since the points are fetched in random order, most of the clouds will be updated periodically. Consequently, we do not believe that an algorithm that re-renders any of the clouds that do not receive new points would be beneficial.

[image: image10.wmf]0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0

20

40

60

80

100

120

Time (seconds)

MSE

CLOUDS R-Tree Overlap Gr=20

CLOUDS R-Tree Overlap Gr=40

CLOUDS R-Tree Overlap Gr=50

CLOUDS R-Tree Overlap Gr=100

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0

50

100

150

Time (seconds)

MSE

CLOUDS Overlap Gr=10

CLOUDS Overlap Gr=15

CLOUDS Overlap Gr=40

CLOUDS Overlap Gr=100

CLOUDS Overlap Gr=500

5. CLOUDS Algorithm with an R-Tree

If the database has an R-Tree index over the points being plotted, CLOUDS can take advantage of it to produce images that more closely approximate the final image. An R-Tree is essentially a map that gives the distribution of points across the x and y dimensions. By using this map, the CLOUDS algorithm can be more intelligent about where it expects points in the final image to lie. To take advantage of this observation, we implemented the CLOUDS R-Tree algorithm, which extracts information about the location of data points from the R-Tree.

First, to implement the CLOUDS R-Tree algorithm, we modified POSTGRES to accept queries that ask for an R-Tree and to return the internal nodes of the R-Tree in breadth-first order. When DataSplash is ready to start rendering a visualization using the CLOUDS R-Tree algorithm, it first fetches the R-Tree from the database. Since R-Tree nodes overlap, it is difficult to determine the number of points in a given rectangular area. Therefore, rather than reconstructing the R-Tree in local memory, the CLOUDS R-Tree algorithm builds a Quad-Tree over the lowest level of the R-Tree. The Quad-Tree stores the predicted distribution of points in the final image. Each node in the Quad-Tree stores the number of points presumed to be contained in the node, according to information extracted from the R-Tree.

To create the Quad-Tree from the R-Tree nodes, the algorithm starts by creating a Quad-Tree root node that covers the entire R-Tree area, and stores the total number of points in the table. Then, it creates four children for the root and calculates the number of points presumed to be contained in each child, and so on for the children of the children
. To calculate the expected number of points in each child, we must assume that each R-Tree node contains an equal fraction of the points in the table and that the points within each R-Tree node are evenly distributed. Given these assumptions, if there are r R-Tree nodes and x points, then each R-Tree node contains x/r points. So, the number of points contained in each Quad-Tree node should be equal to x/r times the number of R-Tree nodes contained in the Quad-Tree node. If only a fraction of an R-Tree node overlaps with the Quad-Tree node, then, based on our even distribution assumption, that fraction of the points in the R-Tree node must be contained in the Quad-Tree node.

[image: image11.wmf]0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0

20

40

60

80

100

120

140

Time (seconds)

MSE

CLOUDS R-Tree Not Adaptive Gr=50

CLOUDS R-Tree Adaptive Gr=50

Once the CLOUDS R-Tree algorithm has built a Quad-Tree, it requests the points from the database. Each time a block of points comes in from the database, the algorithm first renders the points in the same way as the conventional algorithm. Then, it inserts the new points into the Quad-Tree. In this case, each Quad-Tree node stores two values: the predicted number of points contained in the node (which is calculated in advance from the R-Tree) and the number of points fetched so far that are contained in the node (which is updated as new points come in). Next, the algorithm iterates through the leaf nodes of the Quad-Tree. For each Quad-Tree node, P (the percent of points fetched for this node) is calculated by dividing the number of points fetched so far in the node by the number of points expected in the node. Then, B (the percent of black pixels) is simply the expected number of points divided by the number of pixels in the square. Finally, the algorithm calculates the optimal gray value G from P and B and renders a cloud of a predicted optimal gray value over the area covered by the Quad-Tree node. Figure 7 shows the visualization of U.S. cities being rendered with the CLOUDS R-Tree algorithm.

[image: image12.wmf]0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0

200

400

600

800

1000

Time (seconds)

MSE

CLOUDS Overlap Gr=20

CLOUDS Overlap UpdateAll Gr=20

Since the predicted distribution of points on the canvas is based on a set of assumptions, it is likely to be somewhat inaccurate. Therefore, it is not uncommon that when the CLOUDS R-Tree algorithm inserts a new point into a Quad-Tree node, it discovers that the number of points fetched exceeds the predicted number of points in the node. In this case, our estimate was obviously wrong, so the algorithm makes up for this by increasing the predicted number of points to match the number of points fetched.

Unfortunately, since the estimate for the current node was too low, the estimates elsewhere must be too high. To correct for this, we introduce a refinement to the CLOUDS R-Tree algorithm called the Adaptive CLOUDS R-Tree algorithm
. This algorithm keeps the fetched number of points less than or equal to the predicted number of points for all Quad-Tree nodes. A Quad-Tree node is said to “overflow” if it receives a new point that causes the number of points fetched to exceed the number of points predicted. In the non-adaptive algorithm, we handled overflow by increasing the capacity of a node by artificially increasing the predicted number of points. In the adaptive algorithm, on the other hand, when a Quad-Tree node overflows, we insert new points into adjacent Quad-Tree nodes, thereby raising their P and lightening the clouds responsively. This effect compensates for discrepancies between the predicted distribution of points and the actual distribution, which will have unexpected fluctuations.

Figure 8 shows the improvement that the adaptive algorithm makes over the non-adaptive algorithm. Note that as more points are plotted, the non-adaptive does not do as well as the adaptive one. This is because the clouds do not lighten their color much over time since many Quad-Tree nodes receive fewer points than expected and therefore remain dark. The adaptive algorithm, on the other hand, overflows points into Quad-Tree nodes that are underfull, causing all the clouds to lighten as points come in.

6. Refinements to the CLOUDS Algorithms

In addition to using the adaptive algorithm when an R-Tree is available, we have devised two refinements that apply to both the R-Tree and non-R-Tree algorithms. The first refinement involves the observation that if two points are close together, the graphics engine assigns them to the same pixel. Consequently, the screen will be less black than we predict, since we assume that each point is rendered as a different pixel. To account for pixel overlap, we can use probability to determine the amount of overlap that would occur given a random sample of n points that are each assigned to one of N pixels. The probability that some pixel will be white (ie, not contain any points) is:

[image: image4.wmf](

)

N

N

n

n

-

1

[image: image13.wmf]0

0.005

0.01

0.015

0.02

0.025

0

20

40

60

80

100

120

Time (seconds)

MSE

Conventional

Conventional (sorted)

Therefore, the number of pixels that we should expect to be black is:

[image: image5.wmf]N

N

N

n

n

(

(

)

)

1

1

-

-

By accounting for overlap in our calculation of B (the percent of black pixels), both the CLOUDS Overlap algorithm and CLOUDS R-Tree Overlap algorithm
 improve upon the algorithms that do not take overlap into account (see Figure 9).

The second refinement to the two CLOUDS algorithms is to control the extent to which the Quad-Trees split. The granularity of the algorithm specifies when the Quad-Tree should split. In the regular CLOUDS algorithm, a Quad-Tree node splits when the number of points in the node exceeds the granularity. In the CLOUDS R-Tree algorithm, while a Quad-Tree node is being created over the R-Tree, it splits when the predicted number of points in the node exceeds the granularity.

7. Analysis

[image: image14.wmf]The two CLOUDS algorithms are surprisingly similar in their behavior. Both the CLOUDS and CLOUDS R-Tree algorithms beat the conventional algorithm for approximately the first 45 seconds on the U.S. cities data. Figure 10 compares the error of the two CLOUDS algorithms with that of the conventional algorithm.

As the data sets get larger, this benefit will increase, since the total time to plot all the points using the conventional algorithm will get longer, making it more important to receive results right away.

7.1 Data Density and Overlap
[image: image15.wmf]
[image: image16.wmf]The density and overlap of the data set strongly influences the effectiveness of the CLOUDS algorithms. As discussed in Section 3, CLOUDS shows the most improvement over the conventional algorithm when the data set is composed of very dense regions (regions with mostly black pixels). However, since dense data sets tend to have the most overlap, the conventional algorithm does better than we expected in our theoretical results. This is because each time the conventional algorithm renders a point in a dense area, it blackens the same pixel that represents other points, thereby making it seem as though it has rendered several points.

To study the effects of decreasing the data density, we zoomed in on cities in the Midwestern U.S. (see Figure 11). Since the data is sparse, the CLOUDS algorithms do not do any better than the conventional algorithm. However, since CLOUDS incurs additional overhead for keeping Quad-Trees and rendering the clouds, it has worse performance than the conventional algorithm (see Figure 12). To increase the data density, we zoomed out to see the entire United States (see Figure 13). Due to the increase in overlap, the conventional algorithm improved relative to CLOUDS (see Figure 14). Clearly, the optimal data set for CLOUDS would be one with high density but low overlap.

[image: image17.wmf]0

0.01

0.02

0.03

0.04

0.05

0.06

0

20

40

60

80

100

120

Time (seconds)

MSE

Conventional

CLOUDS Gr=20

CLOUDS R-Tree Gr=50

7.2 Sorted Versus Unsorted Data

[image: image18.wmf]0

0.005

0.01

0.015

0.02

0.025

0

20

40

60

80

100

120

Time (seconds)

MSE

Conventional

CLOUDS Overlap Gr=20

CLOUDS R-Tree Overlap Gr=20

Although the CLOUDS algorithm cannot be used on sorted data because it needs a random sample of the data, the CLOUDS R-Tree algorithm works fine. In fact, the CLOUDS R-Tree algorithm beats the conventional algorithm almost entirely with sorted data. This is because rendering sorted data with the conventional algorithm eliminates the advantage gained by having overlap. When the data is sorted, the conventional algorithm renders points that overlap almost at the same time, so it does not get credit for plotting several points by only plotting one as it does for unsorted data (see Figure 15).

[image: image19.wmf]0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0

20

40

60

80

100

120

140

Time (seconds)

MSE

CLOUDS R-Tree Not Adaptive Gr=50

CLOUDS R-Tree Adaptive Gr=50

7.3 Granularity

[image: image20.wmf]0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0

200

400

600

800

1000

Time (seconds)

MSE

CLOUDS Overlap Gr=20

CLOUDS Overlap UpdateAll Gr=20

The effects of changing the granularity are complex. Using a very fine granularity would try to predict the distribution of points in more detail than could possibly be accurate. On the other hand, using a very coarse granularity would not take enough advantage of the patterns in the distribution of points. Also, since each insertion into a node causes its cloud to be re-rendered, using a coarse granularity incurs more render time because large clouds take longer to render than small ones. Figure 16 shows the effect of varying the granularity for the CLOUDS and CLOUDS R-Tree algorithms. For the U.S. cities data set zoomed into the continental U.S., granularity 40 does well for both algorithms. However, changing the granularity did not have a profound effect on the error, and the effect of granularity may vary depending on the data set used.

7.4 Benefits of the R-Tree Algorithm

Although the CLOUDS and CLOUDS R-Tree algorithms tend to converge fairly quickly to the same error, the CLOUDS R-Tree does much better at the beginning. This is chiefly due to the fact that the R-Tree identifies regions that contain no data right away. On the other hand, the non-R-Tree algorithm must wait for some sampling to decide that there will be no data in an empty region. The CLOUDS R-Tree algorithm allows users to immediately differentiate between empty and non-empty areas of the data set. This is very important in some applications.

In addition, the CLOUDS R-Tree algorithm works well on non-randomly ordered data, which is common. On the other hand, to use the non-R-Tree algorithm, random access methods must be used to access the data, which takes longer than accessing it sequentially.

8. Conclusions and Future Work

We have discussed two CLOUDS algorithms that display gray rectangles to approximate the final image in addition to a progressive sample of the data as it is being fetched from the database. The algorithms use various techniques to predict in advance what the final graphical representation will look like once it has been completed, and we have shown that they do better than the conventional algorithm initially.

One way to improve CLOUDS might be to use a hybrid algorithm that switches from the CLOUDS algorithm to the conventional algorithm when it would have less error. In order to do this, we must find the correlation between the size, density, and overlap of the data set and the time at which we should switch to the conventional algorithm.

An additional improvement would be to take advantage of the breadth-first manner in which the database scans R-Tree. Rather than building a Quad-Tree over the lowest level of the R-Tree, the CLOUDS R-Tree algorithm could look at progressively lower levels of the R-Tree as they are being fetched. This would improve the initial response time of the algorithm.

Another important area of future research is to better account for overlap in the data set. Sampling the overlap might be more effective than using our probablistic result for determining and correcting for the overlap.

Next, since CLOUDS is most effective for very large data sets, it is important to look at the way in which the CLOUDS algorithms scale for large data sets. First, if the CLOUDS R-Tree algorithm is modified to look at progressively lower R-Tree levels, it could be adapted to work with an R-Tree that is too big to fit in memory by not looking at the lowest levels. Second, since the non-R-Tree algorithm stores the data points in the leaf nodes of the Quad-Tree, it can only be effective for data sets that fit into memory. One way to solve this problem might be to use a clustering algorithm like BIRCH
 in the leaf nodes of the Quad-Tree. By using a clustering algorithm, it should be possible to store a small amount of data to represent the necessary information about the data points.

Finally, to make CLOUDS applicable to visualizations in general, it would be beneficial to expand it to work with visual objects of varying colors, shapes, and sizes. We believe that with continued research, the CLOUDS algorithms will aide in visualizing large data sets by displaying accurate approximations to the final image faster than the conventional algorithm.

Acknowledgements

We would like to thank members of the CONTROL and Tioga database groups for many helpful suggestions. We would especially like to acknowledge Shankar Raman, who came up with the formula for expected overlap.

Figure 12. Conventional vs. CLOUDS algorithms for U.S. cities zoomed in.

� EMBED Excel.Sheet.8 ���

Figure 10. Conventional vs. CLOUDS algorithms for continental U.S. cities.

� EMBED Excel.Sheet.8 ���

�

Figure 9. The improvement due to taking into account overlap.

Figure 14. Conventional vs. CLOUDS algorithms for U.S. cities zoomed out.

� EMBED Excel.Sheet.8 ���

�

Figure 16. The effect of varying the granularity on the CLOUDS algorithms.

Figure 8. The benefit of the CLOUDS R-Tree Adaptive algorithm over the non-adaptive algorithm for the continental U.S. cities.

� EMBED Excel.Sheet.8 ���

Figure 6. Updating all clouds vs. only ones that received new points since the last render for U.S. cities zoomed out.

� EMBED Excel.Sheet.8 ���

Figure 15. Conventional algorithm with randomly ordered vs. sorted U.S. cities zoomed out.

� EMBED Excel.Sheet.8 ���

Figure 2. Mean squared error of the conventional algorithm.

Figure 3. Theoretical mean squared error of CLOUDS algorithms.

Figure 4. Theoretical improvement of CLOUDS algorithms over the conventional algorithm.

�

Figure 11. U.S. cities canvas zoomed in.

Figure 7. U.S. cities canvas with the CLOUDS R-Tree algorithm after 21 and 62 seconds.

Figure 13. U.S. cities canvas zoomed out.

�

Figure 5. U.S. cities with the CLOUDS algorithm after 22 and 66 seconds.

�

Figure 1. U.S. cities canvas with the conventional algorithm after 25 and 65 seconds.

� This would occur if the data is stored in random order, or if a random access method exists that can provide the data in random order.

� We discuss the point at which the algorithm should stop splitting the Quad-Tree later in the paper.

� All future references to the CLOUDS R-Tree algorithm will be to the adaptive algorithm.

� All future references to the CLOUDS algorithms will be to the overlap algorithms.

� See Zhang, Ramakrishnan, and Livny “BIRCH: An Efficient Data Clustering Method for Very Large Databases”

[image: image21.wmf]0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0

20

40

60

80

100

120

Time (seconds)

MSE

Conventional

CLOUDS Overlap Gr=40

CLOUDS R-Tree Overlap Gr=40

[image: image22.wmf]0

0.005

0.01

0.015

0.02

0.025

0

20

40

60

80

100

120

Time (seconds)

MSE

Conventional

Conventional (sorted)

[image: image23.png]

[image: image24.png]

[image: image25.png]ce, 1 = clouds much better

differenc

[image: image26.png]

_957011456

_957011787.xls
Chart7

		5.920108		6.723202		8.230867

		14.374164		22.220061		20.777999

		23.894631		36.888397		34.956417

		33.814223		49.496619		47.585112

		41.87059		63.346557		61.940359

		51.806114		75.654193		74.363822

		62.053104		89.405048		88.412894

		72.472435		101.706944		100.783447

		81.229412		106.408176		106.364233

		84.679976

Conventional

CLOUDS Gr=20

CLOUDS R-Tree Gr=50

Time (seconds)

MSE

0.054663

0.054557

0.052516

0.047726

0.044676

0.045922

0.041023

0.037919

0.039231

0.034267

0.0308

0.032127

0.02778

0.023987

0.025172

0.021234

0.017048

0.017865

0.014707

0.009809

0.010368

0.008446

0.002656

0.002584

0.002066

0

0

0

Sheet1

		zoomed out

		mybrid unsorted						Rtree overlap granularity 20						No Rtree overlap granularity 20

		time		mse				time		mse				time		mse

		6.34746		0.023285				9.047892		0.007984				7.133501		0.013771

		15.2735		0.014272				21.127556		0.007376				20.97029		0.008048

		25.6495		0.009586				34.499889		0.006852				35.375358		0.006244

		35.9269		0.006433				46.627371		0.005959				47.748375		0.005065

		44.7778		0.00447				60.155695		0.004869				61.796088		0.004008

		55.1206		0.00304				72.283178		0.00359				73.923935		0.003123

		65.7965		0.00186				86.187388		0.002194				88.920976		0.002309

		77.672		0.001013				98.281722		0.000795				102.155854		0.001522

		87.5867		0.00023				102.899775		0				106.479622		0

		91.6304		0

		mybrid sorted

		time		mse

		5.69788		0.023285

		15.1282		0.018864

		26.2055		0.01671

		37.4444		0.014218

		47.1441		0.01153

		58.4957		0.008681

		69.6175		0.006321

		81.365		0.004245

		91.4146		0.000612

		95.3408		0

		---------------CONTINENTAL US-----------------------

		Mybrid		(unsorted)				No R-tree overlap Gr=40						R-Tree Gr=40, overlap

		time		mse				time		mse				time		mse

		5.701318		0.070835				7.084		0.0638				8.106167		0.042056

		14.746572		0.058472				22.33		0.0368				20.674862		0.03801

		25.112386		0.047721				37.525		0.0316				34.85218		0.034152

		35.462683		0.038012				50.992		0.0265				47.194134		0.029795

		44.227052		0.029435				65.74		0.0214				61.584909		0.024654

		54.630446		0.021425				78.696		0.0164				74.282415		0.018501

		65.350859		0.014326				93.703		0.0107				88.967181		0.011254

		77.136271		0.007706				106.936		0.0047				101.742829		0.00297

		86.71207		0.001821				111.333		0				106.441574		0

		90.2752		0

		------------------------ ZOOMED CITIES -------------------------------

		Mybrid		(unsorted)

		time		mse

		5.920108		0.054663

		14.374164		0.047726

		23.894631		0.041023

		33.814223		0.034267

		41.87059		0.02778

		51.806114		0.021234

		62.053104		0.014707

		72.472435		0.008446

		81.229412		0.002066

		84.679976		0

		CLOUDS

		No R-Tree		Gr = 20

		time		mse

		6.723202		0.054557

		22.220061		0.044676

		36.888397		0.037919

		49.496619		0.0308

		63.346557		0.023987

		75.654193		0.017048

		89.405048		0.009809

		101.706944		0.002656

		106.408176		0

		R-Tree		Gr = 50

		time		mse

		8.230867		0.052516

		20.777999		0.045922

		34.956417		0.039231

		47.585112		0.032127

		61.940359		0.025172

		74.363822		0.017865

		88.412894		0.010368

		100.783447		0.002584

		106.364233		0

Sheet1

		

Conventional

CLOUDS Gr=20

CLOUDS R-Tree Gr=50

Time (seconds)

MSE

Sheet2

		

Sheet3

		

_957012581.xls
Chart10

		11.086931		12.651056

		24.171398		25.279843

		39.436497		39.893022

		52.856444		52.71923

		67.692747		66.73026

		80.846043		79.102542

		95.94754		93.915586

		109.612458		106.564278

		114.291283		111.193398

CLOUDS R-Tree Not Adaptive Gr=50

CLOUDS R-Tree Adaptive Gr=50

Time (seconds)

MSE

0.04674

0.04674

0.043155

0.043138

0.039757

0.039758

0.035826

0.035882

0.031147

0.030922

0.026031

0.024672

0.020422

0.016158

0.014788

0.005498

0

0

Sheet1

		---------------CONTINENTAL US-----------------------

		Mybrid		(unsorted)

		time		mse

		5.701318		0.070835

		14.746572		0.058472

		25.112386		0.047721

		35.462683		0.038012

		44.227052		0.029435

		54.630446		0.021425

		65.350859		0.014326

		77.136271		0.007706

		86.71207		0.001821

		90.2752		0

		CLOUDS

		No R-Tree		Gr = 20				No R-Tree overlap Gr=10						No R-Tree overlap Gr=15						No R-Tree overlap Gr=20						No R-Tree overlap Gr=25						No R-Tree overlap Gr=30						No R-tree overlap Gr=40						No R-tree overlap Gr=50						No R-tree overlap Gr=75						No R-tree overlap Gr=100						No Rtree overlap Gr=200						No Rtree overlap Gr=500

		time		mse				time		mse				time		mse				time		mse				time		mse				time		mse				time		mse				time		mse				time		mse				time		mse				time		mse				time		mse

		7.303844		0.062588				7.12422		0.057989				7.281101		0.051499				7.0243		0.051499				7.062948		0.056197				6.9		0.063805				7.084		0.0638				7.86746		0.0707				7.058		0.070666				7.109		0.0706				7.0613		0.0706				7.061193		0.070649

		22.119934		0.049077				21.705583		0.045672				22.14846		0.041191				21.687865		0.039411				21.931358		0.038208				21.705246		0.037846				22.33		0.0368				25.7559		0.0364				23.752		0.036296				23.991		0.0364				25.465		0.0364				28.279667		0.038003

		37.024979		0.043281				36.760666		0.040085				37.234173		0.036502				36.799292		0.034536				36.986828		0.033471				36.880651		0.032435				37.525		0.0316				41.1098		0.0312				39.79		0.030899				39.967		0.0306				43.736		0.0305				48.523915		0.031006

		49.766578		0.037417				50.129602		0.034501				50.610597		0.030532				50.245402		0.028756				50.367993		0.027915				50.364704		0.027351				50.992		0.0265				54.4499		0.0259				53.148		0.025602				53.854		0.0255				58.388		0.0251				66.084959		0.025374

		64.110604		0.033529				65.090647		0.028676				65.46841		0.025634				65.195505		0.023752				64.886833		0.022832				64.70441		0.022272				65.74		0.0214				69.4045		0.0209				68.064		0.020319				69.024		0.0203				74.305		0.0199				84.816441		0.01998

		76.772505		0.029298				78.634643		0.022848				78.92323		0.020205				78.468962		0.018717				78.095248		0.017769				77.862147		0.017117				78.696		0.0164				82.442		0.0158				81.567		0.015074				82.221		0.0148				88.309		0.0145				101.073032		0.014423

		91.625466		0.02355				93.909422		0.016825				93.810167		0.014562				93.471424		0.013181				93.16871		0.012236				92.7943		0.01158				93.703		0.0107				97.492		0.0107				96.616		0.009448				97.372		0.009				103.542		0.0088				118.401066		0.008462

		105.020637		0.016507				107.238954		0.010998				107.53424		0.008663				107.019675		0.007196				106.553931		0.006191				106.282464		0.005634				106.936		0.0047				110.9569		0.00416				109.987		0.003308				111.21		0.00284				117.185		0.0024				133.30881		0.002168

		109.435871		0				112.12519		0				112.01677		0				114.024993		0				111.086705		0				110.805524		0				111.333		0				115.3422		0				114.445		0				115.965		0				121.774		0				138.307287		0

		R-Tree		Gr = 50				R-Tree Gr=20, overlap						R-Tree Gr=30, overlap						R-Tree Gr=40, overlap						R-tree overlap Gr=50						R-tree overlap Gr=100						NOT ADAPTIVE R-tree overlap Gr=50								NOT ADAPTIVE R-tree NO overlap Gr=50

		time		mse				time		mse				time		mse				time		mse				time		mse				time		mse				time		mse						time		mse

		12.651056		0.04674				8.670904		0.042077				8.24871		0.042015				8.106167		0.042056				10.48291		0.042028				7.7797386		0.041995				10.587		0.042028						11.086931		0.04674

		25.279843		0.043138				21.234975		0.038491				20.612371		0.038234				20.674862		0.03801				23.009974		0.037926				21.457573		0.037573				24.122		0.037936						24.171398		0.043155

		39.893022		0.039758				35.537254		0.034774				34.38803		0.034423				34.85218		0.034152				37.417854		0.034053				36.810206		0.033391				39.627		0.034054						39.436497		0.039757

		52.71923		0.035882				47.875843		0.030216				47.225513		0.029979				47.194134		0.029795				49.998465		0.029712				50.444012		0.029006				53.539		0.029599						52.856444		0.035826

		66.73026		0.030922				61.663373		0.025006				61.609131		0.024821				61.584909		0.024654				64.416145		0.024567				65.894873		0.024011				68.588		0.024464						67.692747		0.031147

		79.102542		0.024672				73.946224		0.018727				73.808507		0.018583				74.282415		0.018501				77.237439		0.018445				79.461747		0.018096				82.348		0.018958						80.846043		0.026031

		93.915586		0.016158				88.978265		0.011451				88.553468		0.011314				88.967181		0.011254				91.589596		0.011182				94.610306		0.011003				97.9		0.013101						95.94754		0.020422

		106.564278		0.005498				102.03593		0.003099				101.264216		0.003009				101.742829		0.00297				104.482812		0.002942				107.880658		0.002879				111.421		0.007367						109.612458		0.014788

		111.193398		0				108.2695552		0				105.920823		0				106.441574		0				109.127355		0				112.497328		0				115.929		0						114.291283		0

Sheet1

		

CLOUDS R-Tree Not Adaptive Gr=50

CLOUDS R-Tree Adaptive Gr=50

Time (seconds)

MSE

Sheet2

		

Sheet3

		

_957012869.xls
Chart11

		7.133501		7.796496

		20.97029		50.324332

		35.375358		123.580522

		47.748375		217.490453

		61.796088		331.257046

		73.923935		456.927197

		88.920976		607.223844

		102.155854		770.250325

		106.479622		823.671724

CLOUDS Overlap Gr=20

CLOUDS Overlap UpdateAll Gr=20

Time (seconds)

MSE

0.013771

0.013771

0.008048

0.007675

0.006244

0.005677

0.005065

0.004496

0.004008

0.003352

0.003123

0.002428

0.002309

0.001606

0.001522

0.000767

0

0

Sheet1

		No Rtree overlap granularity 20								No Rtree overlap update ALL gr=20

		time		mse						time		mse

		7.133501		0.013771						7.796496		0.013771

		20.97029		0.008048						50.324332		0.007675

		35.375358		0.006244						123.580522		0.005677

		47.748375		0.005065						217.490453		0.004496

		61.796088		0.004008						331.257046		0.003352

		73.923935		0.003123						456.927197		0.002428

		88.920976		0.002309						607.223844		0.001606

		102.155854		0.001522						770.250325		0.000767

		106.479622		0						823.671724		0

Sheet1

		

CLOUDS Overlap Gr=20

CLOUDS Overlap UpdateAll Gr=20

Time (seconds)

MSE

Sheet2

		

Sheet3

		

_957012527

_957011601.xls
Chart5

		5.701318		7.084		8.106167

		14.746572		22.33		20.674862

		25.112386		37.525		34.85218

		35.462683		50.992		47.194134

		44.227052		65.74		61.584909

		54.630446		78.696		74.282415

		65.350859		93.703		88.967181

		77.136271		106.936		101.742829

		86.71207		111.333		106.441574

		90.2752

Conventional

CLOUDS Overlap Gr=40

CLOUDS R-Tree Overlap Gr=40

Time (seconds)

MSE

0.070835

0.0638

0.042056

0.058472

0.0368

0.03801

0.047721

0.0316

0.034152

0.038012

0.0265

0.029795

0.029435

0.0214

0.024654

0.021425

0.0164

0.018501

0.014326

0.0107

0.011254

0.007706

0.0047

0.00297

0.001821

0

0

0

Sheet1

		zoomed out

		mybrid unsorted						Rtree overlap granularity 20						No Rtree overlap granularity 20

		time		mse				time		mse				time		mse

		6.34746		0.023285				9.047892		0.007984				7.133501		0.013771

		15.2735		0.014272				21.127556		0.007376				20.97029		0.008048

		25.6495		0.009586				34.499889		0.006852				35.375358		0.006244

		35.9269		0.006433				46.627371		0.005959				47.748375		0.005065

		44.7778		0.00447				60.155695		0.004869				61.796088		0.004008

		55.1206		0.00304				72.283178		0.00359				73.923935		0.003123

		65.7965		0.00186				86.187388		0.002194				88.920976		0.002309

		77.672		0.001013				98.281722		0.000795				102.155854		0.001522

		87.5867		0.00023				102.899775		0				106.479622		0

		91.6304		0

		mybrid sorted

		time		mse

		5.69788		0.023285

		15.1282		0.018864

		26.2055		0.01671

		37.4444		0.014218

		47.1441		0.01153

		58.4957		0.008681

		69.6175		0.006321

		81.365		0.004245

		91.4146		0.000612

		95.3408		0

		---------------CONTINENTAL US-----------------------

		Mybrid		(unsorted)				No R-tree overlap Gr=40						R-Tree Gr=40, overlap

		time		mse				time		mse				time		mse

		5.701318		0.070835				7.084		0.0638				8.106167		0.042056

		14.746572		0.058472				22.33		0.0368				20.674862		0.03801

		25.112386		0.047721				37.525		0.0316				34.85218		0.034152

		35.462683		0.038012				50.992		0.0265				47.194134		0.029795

		44.227052		0.029435				65.74		0.0214				61.584909		0.024654

		54.630446		0.021425				78.696		0.0164				74.282415		0.018501

		65.350859		0.014326				93.703		0.0107				88.967181		0.011254

		77.136271		0.007706				106.936		0.0047				101.742829		0.00297

		86.71207		0.001821				111.333		0				106.441574		0

		90.2752		0

Sheet1

		

Conventional

CLOUDS Overlap Gr=40

CLOUDS R-Tree Overlap Gr=40

Time (seconds)

MSE

Sheet2

		

Sheet3

		

_957008868

_957010481.xls
Chart1

		6.34746		7.133501		9.047892

		15.2735		20.97029		21.127556

		25.6495		35.375358		34.499889

		35.9269		47.748375		46.627371

		44.7778		61.796088		60.155695

		55.1206		73.923935		72.283178

		65.7965		88.920976		86.187388

		77.672		102.155854		98.281722

		87.5867		106.479622		102.899775

		91.6304

Conventional

CLOUDS Overlap Gr=20

CLOUDS R-Tree Overlap Gr=20

Time (seconds)

MSE

0.023285

0.013771

0.007984

0.014272

0.008048

0.007376

0.009586

0.006244

0.006852

0.006433

0.005065

0.005959

0.00447

0.004008

0.004869

0.00304

0.003123

0.00359

0.00186

0.002309

0.002194

0.001013

0.001522

0.000795

0.00023

0

0

0

Sheet1

		zoomed out

		mybrid unsorted						Rtree overlap granularity 20						No Rtree overlap granularity 20

		time		mse				time		mse				time		mse

		6.34746		0.023285				9.047892		0.007984				7.133501		0.013771

		15.2735		0.014272				21.127556		0.007376				20.97029		0.008048

		25.6495		0.009586				34.499889		0.006852				35.375358		0.006244

		35.9269		0.006433				46.627371		0.005959				47.748375		0.005065

		44.7778		0.00447				60.155695		0.004869				61.796088		0.004008

		55.1206		0.00304				72.283178		0.00359				73.923935		0.003123

		65.7965		0.00186				86.187388		0.002194				88.920976		0.002309

		77.672		0.001013				98.281722		0.000795				102.155854		0.001522

		87.5867		0.00023				102.899775		0				106.479622		0

		91.6304		0

Sheet1

		

Conventional

CLOUDS Overlap Gr=20

CLOUDS R-Tree Overlap Gr=20

Time (seconds)

MSE

Sheet2

		

Sheet3

		

_957010700.xls
Chart4

		6.34746		5.69788

		15.2735		15.1282

		25.6495		26.2055

		35.9269		37.4444

		44.7778		47.1441

		55.1206		58.4957

		65.7965		69.6175

		77.672		81.365

		87.5867		91.4146

		91.6304		95.3408

Conventional

Conventional (sorted)

Time (seconds)

MSE

0.023285

0.023285

0.014272

0.018864

0.009586

0.01671

0.006433

0.014218

0.00447

0.01153

0.00304

0.008681

0.00186

0.006321

0.001013

0.004245

0.00023

0.000612

0

0

Sheet1

		zoomed out

		mybrid unsorted						Rtree overlap granularity 20						No Rtree overlap granularity 20

		time		mse				time		mse				time		mse

		6.34746		0.023285				9.047892		0.007984				7.133501		0.013771

		15.2735		0.014272				21.127556		0.007376				20.97029		0.008048

		25.6495		0.009586				34.499889		0.006852				35.375358		0.006244

		35.9269		0.006433				46.627371		0.005959				47.748375		0.005065

		44.7778		0.00447				60.155695		0.004869				61.796088		0.004008

		55.1206		0.00304				72.283178		0.00359				73.923935		0.003123

		65.7965		0.00186				86.187388		0.002194				88.920976		0.002309

		77.672		0.001013				98.281722		0.000795				102.155854		0.001522

		87.5867		0.00023				102.899775		0				106.479622		0

		91.6304		0

		mybrid sorted

		time		mse

		5.69788		0.023285

		15.1282		0.018864

		26.2055		0.01671

		37.4444		0.014218

		47.1441		0.01153

		58.4957		0.008681

		69.6175		0.006321

		81.365		0.004245

		91.4146		0.000612

		95.3408		0

Sheet1

		

Conventional

Conventional (sorted)

Time (seconds)

MSE

Sheet2

		

Sheet3

		

_957009046

_957007885

