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Abstract

Visualization is a hot topic in the database community because of its potential to make databases easier to use. Visualization systems present graphical representations of large data sets in order to make the data easy for non-experts to understand.  Typically, these images can be produced only after processing every tuple in a large data set, forcing the visualization system to wait for a long time before it can display a useful graphical representation.

Most visualization systems can produce the graphical representation one tuple at a time in an online, constantly updating fashion.  This improves the interactivity of the visualization system by displaying in graphical form a progressive sample of the data set.  We introduce a visualization system enhancement called CLOUDS, which improves upon this notion.  In addition to displaying a progressive sample, CLOUDS uses various techniques to predict in advance what the final graphical representation will look like once it has been completed.  For point data, this technique amounts to predicting the distribution of the points in 2-space.  As the points are being retrieved from the database, CLOUDS displays the points that have been retrieved so far along with translucent "clouds" that indicate where the remaining points are predicted to lie.  We show that, as points are being retrieved, CLOUDS approximates the final graphical representation more closely than does the conventional display algorithm. Consequently, visualization systems using CLOUDS can display closer approximations to the final image faster than conventional visualization systems.

1. Introduction

Visualization is a hot topic in the database community because of its potential to make databases easier to use. Visualization systems present graphical representations of large data sets in order to make the data easy for non-experts to understand.  Typically, these images can be produced only after processing every tuple in a large data set, forcing the visualization system to wait for a long time before it can display a useful graphical representation.

Most visualization systems can produce the graphical representation one tuple at a time in an online, constantly updating fashion.  This improves the interactivity of the visualization system by displaying in graphical form a progressive sample of the data set.  We introduce a visualization system enhancement called CLOUDS, which improves upon this notion.  In addition to displaying a progressive sample, CLOUDS uses various techniques to predict in advance what the final graphical representation will look like once it has been completed.  For point data, this technique amounts to predicting the distribution of the points in 2-space.  As the points are being retrieved from the database, CLOUDS displays the points that have been retrieved so far along with translucent "clouds" that indicate where the remaining points are predicted to lie. We discuss the mathematical basis behind CLOUDS, and then present the data structures that we use to hold the information necessary to create an accurate image.  We then illustrate how one might take advantage of a previously existing index to calculate the gray value with more accuracy and explain some general improvements to our algorithms.  We show that, as points are being retrieved, CLOUDS approximates the final graphical representation more closely than does the conventional display algorithm. Consequently, visualization systems using CLOUDS can display closer approximations to the final image faster than conventional visualization systems.

1.1 Outline of Paper

The remainder of this paper is organized as follows.  In Section 2, we discuss DataSplash and the conventional algorithm for generating a visual representation of a data set.  Section 3 includes discussion of the mathematical background for determining the gray values of the CLOUDS algorithm.  Sections 4 and 5 cover the implementation of the CLOUDS algorithm when no index exists and when an index exists, respectively.  In Section 6, we explain some improvements to the CLOUDS algorithms.  Section 7 contains a final analysis of the CLOUDS algorithms compared to the conventional algorithm.  Finally, in Section 8 we discuss future work and conclude.

2. DataSplash Background

The Tioga DataSplash system provides a direct-manipulation interface for database visualization.  Using a simple paint program interface, users create graphical objects on a 2-dimensional canvas.  Each canvas is associated with a database table.  Users can create splash objects, which are replicated for each tuple (record) in the table (i.e., one instance of the object is drawn for each tuple).  Graphical properties of a splash object, such as its location on the canvas, shape and color, can be functions of attributes of the underlying tuple.  Thus, splash objects are graphical representations of database tuples.  DataSplash supports ad-hoc visualization of arbitrary data fields, making it useful for spatial and non-spatial data. 

In this paper, we consider a small subset of the visualizations that DataSplash supports.  Specifically, each tuple is represented as a black point whose x and y location on the canvas are functions of attributes of the tuple. 
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DataSplash canvases are infinitely pannable in the X and Y dimensions.  In addition, canvases can be zoomed in and out to adjust the level of magnification.  Thus, arbitrarily large data sets can be represented, and different portions can be accessed via panning and zooming.

To display a visualization on the screen, DataSplash first sends a request for the data to the database (DataSplash runs on top of the POSTGRES ORDBMS).  Then, as the data streams in, DataSplash renders it on the screen.  To amortize the overhead of rendering, DataSplash renders tuples in blocks.  Therefore, every time DataSplash receives a block worth of data from the database, it renders it on the screen so the user can see it.  For the remainder of this paper, we refer to this display algorithm as the conventional algorithm.  Figure 1 shows a visualization of U.S. cities being rendered with the conventional algorithm.

3. Theoretical Results for CLOUDS

The conventional algorithm is problematic because it takes a long time to render the final image on the screen.  It would be ideal if the final image could be rendered instantaneously.  Although the ideal case is impossible to achieve, we show that it is possible to render images that more closely approximate the final image while the points are being fetched than the conventional algorithm.

To quantify how closely an image approximates the final image, we use the Mean Squared Error (MSE) metric from the image compression field.  To compute the MSE of a black and white image, we subtract the gray value of every pixel from the corresponding pixel in the final image (to produce a value between 0 and 1).  Then we square each difference and add them together.  Finally, we divide this number by the total number of pixels. 
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Given a rectangular piece of an image that we are rendering, we assign the following variables:

B = % of pixels in the final image that are black

P = % of black pixels that have been fetched & plotted

In the case of the conventional algorithm, the only error results from points that have not yet been plotted.   Therefore,

MSE = (1 - P)(B)(1)2 = B-PB (see Figure 2).

To improve upon the conventional algorithm, we propose coloring the rectangle gray, which is characterized by the following variable:

G = gray value of clouds (0 = black, 1 = white)

The MSE for this algorithm, the CLOUDS algorithm, is a function of the gray value used:

MSE = (1-B)(1-G) 2 + B(1-P)(0-G) 2 = 1-2G +G2-B +2BG – PBG2
By minimizing the MSE, we find that the optimal gray value is:
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Plugging GBest into the MSE formula, we get: 
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These results show that the CLOUDS algorithm can theoretically beat or equal the conventional algorithm for all values of P and B.  The CLOUDS algorithm does especially well for images that have a high B value when very few points have been fetched (see Figure 4).
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4. Basic CLOUDS Algorithm


To reap the benefits of the above theoretical result, we devised the CLOUDS algorithm, which displays translucent “clouds” in addition to data points.  While the data points are being fetched from the database, the CLOUDS algorithm renders gray rectangles, or clouds, that alter the image so that it more closely approximates the final image.  Dark clouds in a certain portion of the canvas indicate that many more points are expected to appear.  Light clouds indicate that very few points are expected.  When DataSplash begins to render a canvas, many dark clouds will indicate portions of the canvas that are expected to contain many points.  As time progresses and more points have been fetched and rendered, the clouds lighten their color to indicate that fewer points are expected.

To do this, the CLOUDS algorithm breaks up the canvas into a set of rectangles.  For each rectangle, it makes its best guess at values for P (the percent of points rendered) and B (the percent of pixels that will be black in the final image).  From these values, it calculates the optimal value for G (the gray value that would make the image most closely approximate the final image).  Finally, it draws a cloud over the rectangle of gray value G.


We use a Quad-Tree data structure to implement the CLOUDS algorithm.  Each node of a Quad-Tree represents a square in 2-space.  Leaf nodes contain a list of points that fall within the square represented by the node.  Non-leaf nodes have four children that divide the square equally into four smaller squares.  In addition, each non-leaf node keeps track of the number of points contained in its children.
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Each time DataSplash receives a block of tuples from the database, the CLOUDS algorithm first renders the points in the same way as the conventional algorithm.  Then, it inserts the new points into the Quad-Tree.  Next, it calculates P (the percent of tuples fetched) by dividing the number of tuples fetched so far by the total number of tuples in the table.  If the tuples are retrieved from the database in random order
, then P is the same for the entire canvas.  Next, the algorithm iterates through the leaf nodes of the Quad-Tree.  For each Quad-Tree leaf node, it calculates the number of points that are expected to appear in the square once all of the tuples have been fetched.  This number is calculated by dividing the number of points in the square so far by P.  Then, B (the percent of black pixels) is simply the expected final number of points divided by the number of pixels in the square.  Finally, the optimal gray value G is calculated from P and B using the formula calculated above.  Once G has been calculated, the CLOUDS algorithm renders a cloud of the predicted optimal gray value over the area covered by the Quad-Tree node.  Figure 5 shows the visualization of U.S. cities being rendered with CLOUDS algorithm.


After the clouds have been rendered for the first time, subsequent rendering passes only re-render clouds for Quad-Tree nodes that have received new points since the last pass.  Although this saves rendering time, it is inaccurate because every new point fetched from the database changes the global value for P.  This should make all of the clouds slightly lighter.  Figure 6 compares the result of re-rendering all the clouds with only re-rendering clouds for Quad-Tree nodes that have received new points since the last render.  Not only does updating all the clouds take a very long time, but the reduction in error due to updating all the clouds is fairly small (each data point was recorded after the same number of points had been rendered for both algorithms).  This is due to the fact that since the points are fetched in random order, most of the clouds will be updated periodically.  Consequently, we do not believe that an algorithm that re-renders any of the clouds that do not receive new points would be beneficial.
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5. CLOUDS Algorithm with an R-Tree


If the database has an R-Tree index over the points being plotted, CLOUDS can take advantage of it to produce images that more closely approximate the final image.  An R-Tree is essentially a map that gives the distribution of points across the x and y dimensions.  By using this map, the CLOUDS algorithm can be more intelligent about where it expects points in the final image to lie.  To take advantage of this observation, we implemented the CLOUDS R-Tree algorithm, which extracts information about the location of data points from the R-Tree.


First, to implement the CLOUDS R-Tree algorithm, we modified POSTGRES to accept queries that ask for an R-Tree and to return the internal nodes of the R-Tree in breadth-first order.  When DataSplash is ready to start rendering a visualization using the CLOUDS R-Tree algorithm, it first fetches the R-Tree from the database.  Since R-Tree nodes overlap, it is difficult to determine the number of points in a given rectangular area.  Therefore, rather than reconstructing the R-Tree in local memory, the CLOUDS R-Tree algorithm builds a Quad-Tree over the lowest level of the R-Tree.  The Quad-Tree stores the predicted distribution of points in the final image.  Each node in the Quad-Tree stores the number of points presumed to be contained in the node, according to information extracted from the R-Tree.  

To create the Quad-Tree from the R-Tree nodes, the algorithm starts by creating a Quad-Tree root node that covers the entire R-Tree area, and stores the total number of points in the table.  Then, it creates four children for the root and calculates the number of points presumed to be contained in each child, and so on for the children of the children
.  To calculate the expected number of points in each child, we must assume that each R-Tree node contains an equal fraction of the points in the table and that the points within each R-Tree node are evenly distributed.  Given these assumptions, if there are r R-Tree nodes and x points, then each R-Tree node contains x/r points.  So, the number of points contained in each Quad-Tree node should be equal to x/r times the number of R-Tree nodes contained in the Quad-Tree node.  If only a fraction of an R-Tree node overlaps with the Quad-Tree node, then, based on our even distribution assumption, that fraction of the points in the R-Tree node must be contained in the Quad-Tree node.
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Once the CLOUDS R-Tree algorithm has built a Quad-Tree, it requests the points from the database.  Each time a block of points comes in from the database, the algorithm first renders the points in the same way as the conventional algorithm.  Then, it inserts the new points into the Quad-Tree.  In this case, each Quad-Tree node stores two values:  the predicted number of points contained in the node (which is calculated in advance from the R-Tree) and the number of points fetched so far that are contained in the node (which is updated as new points come in).  Next, the algorithm iterates through the leaf nodes of the Quad-Tree.  For each Quad-Tree node, P (the percent of points fetched for this node) is calculated by dividing the number of points fetched so far in the node by the number of points expected in the node.  Then, B (the percent of black pixels) is simply the expected number of points divided by the number of pixels in the square.  Finally, the algorithm calculates the optimal gray value G from P and B and renders a cloud of a predicted optimal gray value over the area covered by the Quad-Tree node.  Figure 7 shows the visualization of U.S. cities being rendered with the CLOUDS R-Tree algorithm.
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Since the predicted distribution of points on the canvas is based on a set of assumptions, it is likely to be somewhat inaccurate.  Therefore, it is not uncommon that when the CLOUDS R-Tree algorithm inserts a new point into a Quad-Tree node, it discovers that the number of points fetched exceeds the predicted number of points in the node.  In this case, our estimate was obviously wrong, so the algorithm makes up for this by increasing the predicted number of points to match the number of points fetched.  

Unfortunately, since the estimate for the current node was too low, the estimates elsewhere must be too high.  To correct for this, we introduce a refinement to the CLOUDS R-Tree algorithm called the Adaptive CLOUDS R-Tree algorithm
.  This algorithm keeps the fetched number of points less than or equal to the predicted number of points for all Quad-Tree nodes.  A Quad-Tree node is said to “overflow” if it receives a new point that causes the number of points fetched to exceed the number of points predicted.  In the non-adaptive algorithm, we handled overflow by increasing the capacity of a node by artificially increasing the predicted number of points.  In the adaptive algorithm, on the other hand, when a Quad-Tree node overflows, we insert new points into adjacent Quad-Tree nodes, thereby raising their P and lightening the clouds responsively.  This effect compensates for discrepancies between the predicted distribution of points and the actual distribution, which will have unexpected fluctuations.  

Figure 8 shows the improvement that the adaptive algorithm makes over the non-adaptive algorithm.  Note that as more points are plotted, the non-adaptive does not do as well as the adaptive one.  This is because the clouds do not lighten their color much over time since many Quad-Tree nodes receive fewer points than expected and therefore remain dark.  The adaptive algorithm, on the other hand, overflows points into Quad-Tree nodes that are underfull, causing all the clouds to lighten as points come in.

6. Refinements to the CLOUDS Algorithms

In addition to using the adaptive algorithm when an R-Tree is available, we have devised two refinements that apply to both the R-Tree and non-R-Tree algorithms.  The first refinement involves the observation that if two points are close together, the graphics engine assigns them to the same pixel.  Consequently, the screen will be less black than we predict, since we assume that each point is rendered as a different pixel.  To account for pixel overlap, we can use probability to determine the amount of overlap that would occur given a random sample of n points that are each assigned to one of N pixels.  The probability that some pixel will be white (ie, not contain any points) is:
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Therefore, the number of pixels that we should expect to be black is:
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By accounting for overlap in our calculation of B (the percent of black pixels), both the CLOUDS Overlap algorithm and CLOUDS R-Tree Overlap algorithm
 improve upon the algorithms that do not take overlap into account (see Figure 9).


The second refinement to the two CLOUDS algorithms is to control the extent to which the Quad-Trees split.  The granularity of the algorithm specifies when the Quad-Tree should split.  In the regular CLOUDS algorithm, a Quad-Tree node splits when the number of points in the node exceeds the granularity.  In the CLOUDS R-Tree algorithm, while a Quad-Tree node is being created over the R-Tree, it splits when the predicted number of points in the node exceeds the granularity.

7. Analysis

[image: image14.wmf]The two CLOUDS algorithms are surprisingly similar in their behavior.  Both the CLOUDS and CLOUDS R-Tree algorithms beat the conventional algorithm for approximately the first 45 seconds on the U.S. cities data.  Figure 10 compares the error of the two CLOUDS algorithms with that of the conventional algorithm.

As the data sets get larger, this benefit will increase, since the total time to plot all the points using the conventional algorithm will get longer, making it more important to receive results right away.

7.1  Data Density and Overlap
[image: image15.wmf]
[image: image16.wmf]The density and overlap of the data set strongly influences the effectiveness of the CLOUDS algorithms.  As discussed in Section 3, CLOUDS shows the most improvement over the conventional algorithm when the data set is composed of very dense regions (regions with mostly black pixels).  However, since dense data sets tend to have the most overlap, the conventional algorithm does better than we expected in our theoretical results.  This is because each time the conventional algorithm renders a point in a dense area, it blackens the same pixel that represents other points, thereby making it seem as though it has rendered several points.

To study the effects of decreasing the data density, we zoomed in on cities in the Midwestern U.S. (see Figure 11).  Since the data is sparse, the CLOUDS algorithms do not do any better than the conventional algorithm.  However, since CLOUDS incurs additional overhead for keeping Quad-Trees and rendering the clouds, it has worse performance than the conventional algorithm (see Figure 12).  To increase the data density, we zoomed out to see the entire United States (see Figure 13).  Due to the increase in overlap, the conventional algorithm improved relative to CLOUDS (see Figure 14).  Clearly, the optimal data set for CLOUDS would be one with high density but low overlap.
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7.2  Sorted Versus Unsorted Data
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Although the CLOUDS algorithm cannot be used on sorted data because it needs a random sample of the data, the CLOUDS R-Tree algorithm works fine.  In fact, the CLOUDS R-Tree algorithm beats the conventional algorithm almost entirely with sorted data.  This is because rendering sorted data with the conventional algorithm eliminates the advantage gained by having overlap.  When the data is sorted, the conventional algorithm renders points that overlap almost at the same time, so it does not get credit for plotting several points by only plotting one as it does for unsorted data (see Figure 15).
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7.3 Granularity

[image: image20.wmf]0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0

200

400

600

800

1000

Time (seconds)

MSE

CLOUDS Overlap Gr=20

CLOUDS Overlap UpdateAll Gr=20

The effects of changing the granularity are complex.  Using a very fine granularity would try to predict the distribution of points in more detail than could possibly be accurate.  On the other hand, using a very coarse granularity would not take enough advantage of the patterns in the distribution of points.  Also, since each insertion into a node causes its cloud to be re-rendered, using a coarse granularity incurs more render time because large clouds take longer to render than small ones.  Figure 16 shows the effect of varying the granularity for the CLOUDS and CLOUDS R-Tree algorithms.  For the U.S. cities data set zoomed into the continental U.S., granularity 40 does well for both algorithms.  However, changing the granularity did not have a profound effect on the error, and the effect of granularity may vary depending on the data set used.

7.4 Benefits of the R-Tree Algorithm

Although the CLOUDS and CLOUDS R-Tree algorithms tend to converge fairly quickly to the same error, the CLOUDS R-Tree does much better at the beginning.  This is chiefly due to the fact that the R-Tree identifies regions that contain no data right away.  On the other hand, the non-R-Tree algorithm must wait for some sampling to decide that there will be no data in an empty region.  The CLOUDS R-Tree algorithm allows users to immediately differentiate between empty and non-empty areas of the data set.  This is very important in some applications.

In addition, the CLOUDS R-Tree algorithm works well on non-randomly ordered data, which is common.  On the other hand, to use the non-R-Tree algorithm, random access methods must be used to access the data, which takes longer than accessing it sequentially.

8. Conclusions and Future Work

We have discussed two CLOUDS algorithms that display gray rectangles to approximate the final image in addition to a progressive sample of the data as it is being fetched from the database.  The algorithms use various techniques to predict in advance what the final graphical representation will look like once it has been completed, and we have shown that they do better than the conventional algorithm initially.

One way to improve CLOUDS might be to use a hybrid algorithm that switches from the CLOUDS algorithm to the conventional algorithm when it would have less error.  In order to do this, we must find the correlation between the size, density, and overlap of the data set and the time at which we should switch to the conventional algorithm.  

An additional improvement would be to take advantage of the breadth-first manner in which the database scans R-Tree.  Rather than building a Quad-Tree over the lowest level of the R-Tree, the CLOUDS R-Tree algorithm could look at progressively lower levels of the R-Tree as they are being fetched.  This would improve the initial response time of the algorithm.

Another important area of future research is to better account for overlap in the data set.  Sampling the overlap might be more effective than using our probablistic result for determining and correcting for the overlap.

Next, since CLOUDS is most effective for very large data sets, it is important to look at the way in which the CLOUDS algorithms scale for large data sets.  First, if the CLOUDS R-Tree algorithm is modified to look at progressively lower R-Tree levels, it could be adapted to work with an R-Tree that is too big to fit in memory by not looking at the lowest levels.  Second, since the non-R-Tree algorithm stores the data points in the leaf nodes of the Quad-Tree, it can only be effective for data sets that fit into memory.  One way to solve this problem might be to use a clustering algorithm like BIRCH
 in the leaf nodes of the Quad-Tree.  By using a clustering algorithm, it should be possible to store a small amount of data to represent the necessary information about the data points.

Finally, to make CLOUDS applicable to visualizations in general, it would be beneficial to expand it to work with visual objects of varying colors, shapes, and sizes.  We believe that with continued research, the CLOUDS algorithms will aide in visualizing large data sets by displaying accurate approximations to the final image faster than the conventional algorithm.  
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Figure 12.  Conventional vs. CLOUDS algorithms for U.S. cities zoomed in.
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Figure 10.  Conventional vs. CLOUDS algorithms for continental U.S. cities.
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Figure 9.  The improvement due to taking into account overlap.





Figure 14.  Conventional vs. CLOUDS algorithms for U.S. cities zoomed out.
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Figure 16.  The effect of varying the granularity on the CLOUDS algorithms.





Figure 8.  The benefit of the CLOUDS R-Tree Adaptive algorithm over the non-adaptive algorithm for the continental U.S. cities.
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Figure 6.  Updating all clouds vs. only ones that received new points since the last render for U.S. cities zoomed out.
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Figure 15.  Conventional algorithm with randomly ordered vs. sorted U.S. cities zoomed out.
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Figure 2.  Mean squared error of the conventional algorithm.





Figure 3.  Theoretical mean squared error of CLOUDS algorithms.





Figure 4.  Theoretical improvement of CLOUDS algorithms over the conventional algorithm.
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Figure 11.  U.S. cities canvas zoomed in.





Figure 7.  U.S. cities canvas with the CLOUDS R-Tree algorithm after 21 and 62 seconds.





Figure 13.  U.S. cities canvas zoomed out.
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Figure 5.  U.S. cities with the CLOUDS algorithm after 22 and 66 seconds.





�





Figure 1.  U.S. cities canvas with the conventional algorithm after 25 and 65 seconds.








� This would occur if the data is stored in random order, or if a random access method exists that can provide the data in random order.





� We discuss the point at which the algorithm should stop splitting the Quad-Tree later in the paper.


� All future references to the CLOUDS R-Tree algorithm will be to the adaptive algorithm.


� All future references to the CLOUDS algorithms will be to the overlap algorithms.


� See Zhang, Ramakrishnan, and Livny “BIRCH: An Efficient Data Clustering Method for Very Large Databases”
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